Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20401, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903749

RESUMO

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome-wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype-calling methods using data from two autotetraploid species, Miscanthus sacchariflorus and Vaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype-calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost-efficiently implement GWAS and genomic prediction in polyploid crops.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Genótipo , Genômica/métodos , Poliploidia
2.
Ann Bot ; 124(4): 731-748, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30247525

RESUMO

BACKGROUND AND AIMS: Miscanthus, a C4 perennial grass native to East Asia, is a promising biomass crop. Miscanthus sacchariflorus has a broad geographic range, is used to produce paper in China and is one of the parents (along with Miscanthus sinensis) of the important biomass species Miscanthus × giganteus. The largest study of M. sacchariflorus population genetics to date is reported here. METHODS: Collections included 764 individuals across East Asia. Samples were genotyped with 34 605 single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RAD-seq) and ten plastid microsatellites, and were subjected to ploidy analysis by flow cytometry. KEY RESULTS: Six major genetic groups within M. sacchariflorus were identified using SNP data: three diploid groups, comprising Yangtze (M. sacchariflorus ssp. lutarioriparius), N China and Korea/NE China/Russia; and three tetraploid groups, comprising N China/Korea/Russia, S Japan and N Japan. Miscanthus sacchariflorus ssp. lutarioriparius was derived from the N China group, with a substantial bottleneck. Japanese and mainland tetraploids originated from independent polyploidization events. Hybrids between diploid M. sacchariflorus and M. sinensis were identified in Korea, but without introgression into either parent species. In contrast, tetraploid M. sacchariflorus in southern Japan and Korea exhibited substantial hybridization and introgression with local diploid M. sinensis. CONCLUSIONS: Genetic data indicated that the land now under the Yellow Sea was a centre of diversity for M. sacchariflorus during the last glacial maximum, followed by a series of migrations as the climate became warmer and wetter. Overall, M. sacchariflorus has greater genetic diversity than M. sinensis, suggesting that breeding and selection within M. sacchariflorus will be important for the development of improved M. × giganteus. Ornamental M. sacchariflorus genotypes in Europe and North America represent a very narrow portion of the species' genetic diversity, and thus do not well represent the species as a whole.


Assuntos
Diploide , Tetraploidia , China , Europa (Continente) , Ásia Oriental , Humanos , Japão , América do Norte , Poaceae
3.
Ann Bot ; 118(5): 941-955, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451985

RESUMO

Background and aims Miscanthus is a genus of perennial C4 grasses native to East Asia. It includes the emerging ligno-cellulosic biomass crop M. ×giganteus, a hybrid between M. sinensis and M. sacchariflorus. Biomass yield and cold tolerance are of particular interest in Miscanthus, given that this crop is more temperate adapted than its C4 relatives maize, sorghum and sugarcane. Methods A plant exploration was conducted in eastern Russia, at the northern extreme of the native range for Miscanthus, with collections including 174 clonal germplasm accessions (160 M. sacchariflorus and 14 M. sinensis) from 47 sites. Accessions were genotyped by restriction site-associated DNA sequencing (RAD-seq) and plastid microsatellites. Key Results Miscanthus sinensis was found in maritime climates near Vladivostok (43·6°N) and on southern Sakhalin Island (46·6°N). Miscanthus sacchariflorus was found inland at latitudes as high as 49·3°N, where M. sinensis was absent. Most M. sacchariflorus accessions were diploid, but approx. 2 % were tetraploids. Molecular markers revealed little population structure (Jost's D < 0·007 among diploid groups) but high genetic diversity (expected heterozygosity = 0·14) within the collection of Russian M. sacchariflorus. Genome-wide association (GWA) analysis for traits measured at the collection sites revealed three M. sacchariflorus single nucleotide polymorphisms (SNPs) significantly associated with the number of stems per unit area, one with height and one with basal stem diameter; three were near or within previously described sorghum quantitative trait loci for related traits. Conclusions This new Miscanthus germplasm collection from eastern Russia will be useful for breeding Miscanthus and sugarcane cultivars with improved adaptation to cold. Moreover, a strategy is proposed to facilitate the rapid utilization of new germplasm collections: by implementing low-cost SNP genotyping to conduct GWA studies of phenotypic data obtained at collection sites, plant breeders can be provided with actionable information on which accessions have desirable traits and alleles.

4.
J Exp Bot ; 66(14): 4213-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25618143

RESUMO

Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mechanism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and breadth were difficult to obtain before the advent of affordable high-density genotyping. Throughout Japan, tetraploid Miscanthus sacchariflorus and diploid Miscanthus sinensis are common, and occasionally hybridize. In this study, 667 M. sinensis and 78 M. sacchariflorus genotypes from Japan were characterized using 20 704 SNPs and ten plastid microsatellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids originated through autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into tetraploid M. sacchariflorus throughout Japan; most tetraploids had some M. sinensis DNA. Among phenotypically M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1-39%, with introgression greatest in southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6-27% M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern China, selection for adaptation to a moderate maritime climate probably favoured cross-ploidy introgressants in southern Japan. These results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars.


Assuntos
Poaceae/genética , Hibridização Genética , Japão , Repetições de Microssatélites/genética , Plastídeos/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...